
SoftwareSoftware DevelopmentDevelopment
Best Practices 2008Best Practices 2008

ConferenceConference
Overview and Thoughts

Conference Impressions

• Software development practices and
tools are still maturing rapidly

• Agile is accepted, but still no easier
than traditional!

• Test Driven, Test Driven, Test Driven
• Automated testing gaining ground in

areas besides development, e.g.
acceptance testing

Some Agile Concepts

• Never Be Blocked!
• Visibility metrics for customer:

– Burn down
– Velocity

• “Agile contracting” new trend

Introducing Agile to an
Organization

1. Has a “need for change” awareness
2. Determine what is valuable to the

customer and select Agile practices
3. Introduce

1. To a few small teams first
2. Only one ‘dimension’ at a time

4. Gain experience and eliminate
waste

Match Agile Practices to
Organizational Needs

• Not all agile practices created equal
• Different organization suggest

require different practices
• Examples:

– Continuous integration reduces time-to-
market, quality and visibility

– Simple design reduces time to market,
cost and lifetime

Test Driven Practices:
Trends

• Basically embraced by the industry
• But why isn’t it widely adopted yet?

– Not trivial to do
– Much more difficult with legacy code

(most codes)
– Industry is still learning best practices,

e.g.
• Mock ups
• Patterns of refactoring
• The “need to test” code affects the design

(e.g. having a testable interface)

Test Driven Practices:
Analogy

• Applying a scientific method to code
development
– Form a hypothesis - write a test
– Perform an experiment - Run the

test/write the implementation
– Repeat

Test Driven Practices:
Tool Support

• Besides Xunit Fx’s:
– Growing sets of COTS/OSS support

tools: Jmock, EasyMock, Clover,
Selenium, Cactus, Agitar, etc.

• Testing parallel code perfectly is
currently difficult or impossible
– A concurrency testing framework exists

• Refactoring tools support is
phenomenal for Java, but Fortran?

Test Driven Practices:
Some Concepts

• Test code is AT LEAST as important
as the code

• Got a large feature?
– Implement a small “slice” of the feature

that crosses all layers of the system
– e.g. UI--> model --> persistence

• Test “smells”
– e.g. shared test fixture like a DB = “Test

Run War”

The QA Shift

• From verification to specification
• QA now writes acceptance tests
• Again! QA writes tests first, before

developers write code

Aspect-Oriented
Programming

• Cross-cutting concerns that occur through
unrelated sections of code (e.g. logging)

• Add aspects to code without changing
existing code
– Example: “Code that implements interface Play,

should have these aspects…”

• Centralized policy decisions for those
particular aspects

• Performance is approximately same as non-
AOP, although startup is slower

• Still immature, but potentially beneficial

XML

• The standard data exchange format
• Lots of tool support
• When should I use it?

– Data needs to be exchanged
• Standardize a robust message format

– Or data is expected to be extended
• Defining new fields is easy with the tools

– Data will be stored long-term
• Easy to understand with the meta-data

• Fortran has an XML parser too (FoX)

